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A causal set is considered a finite, acyclic oriented graph with special restrictions: each
vertex has two incident edges directed to this vertex and two incident edges directed from
this vertex. This graph is called a causal graph. The vertex with incident edges is called
an X-structure. Quantum measurements are discussed. A dynamics of the causal graph
is a random sequence of elementary interactions of edges that is described by complex
amplitudes. These amplitudes correspond to each pair of interacting edges. The edges
are elementary particles. The mass of a particle is a probability of the interaction. An
equation of particles is proposed. In a simple case this equatio§-fdructure is the
Dirac’s equation. The edges are fermions with the spin 1/2.

1. INTRODUCTION

A particular case of the causal set hypothesis is presented in this paper. This
hypothesis asserts that a microstructure of spacetime is a causal set. The causal set
is a locally finite set with a partial-order relation, namely the relatiosuch that
Va, b, c e G,

a < a (reflexive relation), (1.1)
(a<b) A (b<a) = (a=D) (acyclic relation), 1.2
(a<<b) A (b=<c) = (a=<c) (transitive relation), (1.3)
I[a, b]| < oo (local finiteness) (1.49)

[[a, b]| is the number of elements, falling betweena andb in the sense that
a<c=<b. The causal set hypothesis asserts that this partial-order relation is the
causal relation of discrete spacetime. For a fuller introduction to causal sets see
Bombelliet al. (1987), Reid (1999), and Sorkin (1991).

The dynamics of causal sets is not very developed. A general family of classi-
cally stochastic, sequential-growth dynamics for causal sets is studied in Rideout
and Sorkin (1999, 2000) and Sorkin (2000). One of the best reasons to be interested

1GCMPP, Novojasenevskiy 32-1-557, 117463, Moscow, Russia; e-mail: krugly@aha.ru.
1

0020-7748/02/0100-0001/ 2002 Plenum Publishing Corporation



2 Krugly

in the classical dynamics for causal sets is that quantum gravity must possess gen-
eral relativity as a classical limit. A quantum model of a causal set dynamics
is studied in Criscuolo and Waelbroeck (1998). In these papers the connection
between causal set and spacetime is discussed.

In my opinion the first step in developing a causal set dynamics is to construct
particles instead of spacetime. Some properties of particles can be connected with
some elementary interactions of a causal set. Spacetime can be a result of many
such interactions. This is a more complicated thing. The proposed dynamics is
based on the immediate causal priority (Finkelstein, 1988).

In the subsequent sections of this paper | describe the model, introduce the
variant of a causal set dynamics, introduce the concept of a proper time and mass
of particles, consider the state vectors of edges and Dirac’s equation; and discuss
future opportunities of the considered approach. The model in questionis discussed
also in Krugly (1998, 2000a,b).

2. MODEL
2.1. An Acyclic Oriented Graph

Suppose the universe consists of some pairs of discrete events that are con-
nected by elementary discrete causal connections. Then spacetime is an oriented
graph. Graph theory is presented in Ore (1962); a fragment of such a graph is
represented in Fig. 1. The vertexes are world points. The oriented edges are el-
ementary causal connections. The represented fragment contains 9 vertexes and
25 edges. The edges have arbitrary numbers. An edge is directed from a vertex

22 23 24 25

Fig. 1. An example of a graph.
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cause to a vertex effect. The edges directed to a vertex are called input edges of
this vertex. The edges directed from a vertex are called output edges of this vertex.
In Fig. 1 the edges 6, 7, 8, 9, 11, 12, 13, 18, 19, 20, and 21 are incident to two
vertexes. Such edges are called internal edges. In the graph of the universe each
edge is incident to two vertexes, but in Fig. 1 some edges are linked with only
one vertex because the paired vertex lies outside the figure. Such edges are called
external edges. The external edges directed to a vertex of the considered fragment
are called external input edges. The edges 1, 2, 3, 4, 5, 14, and 15 are the external
input edges. The external edges directed from a vertex of the considered fragment
are called external output edges. The edges 10, 16, 17, 22, 23, 24, and 25 are the
external output edges. The graph of the universe may be finite or infinite. We do
not discuss this problem. In any case we can consider only finite fragments and
take into account the rest of the graph in an approximate way.

A set of edges is called a sequence if every two neighboring edges have a
common vertex. A sequence is called oriented if all the edges of the sequence are
included in the direction of the orientation. Two vertexeandb have a causal
connection if there is an oriented sequence between them or if these vertexes co-
incide. The vertexes are denoted by lowercase Latin letters. \eiitethe cause
of vertexb if vertexa is the initial vertex of this sequence. The sequence is called
cyclic if the vertexes andb coincide. The causality principle is the prohibition
of oriented cyclic sequences. In this case the set of vertexes is the causal set and
satisfies the conditions (1.1)—(1.4).

Suppose the graph is of the deepest level of matter. Vertexes and edges are
elementary objects and have no internal structure. All the vertexes are identical
and so are all the edges. All information consists in the structure of the graph. The
graph makes up spacetime. Particles are parts of the graph with some symmetry.

2.2. A Duality of Vertexes and Edges

There is some symmetry between vertexes and edges. The edges can be
denoted using incident vertexes. Denotedyh) the internal edge that is incident
to the vertexes andb. Denote byat the external output edge that is incident to
the vertexa. Denote bya| the external input edge that is incident to the vedex
In these notations the external input or output edges are indiscernible if they are
incident to the same vertex. These notations are called the vertex representations.
Similarly, the edges can be considered primary objects. The edges are denoted
by lowercase Greek letters. Denotedoy the external output edge and by the
external input edge. The arrows are used for the designation of output and input
edges. These arrows will be omitted for simplification of the designation if possible.
The vertexes can be denoted using the incident edges. Denate By, ) the
vertex that is incident to the edgesp, y, ands. This notation is called the edge
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representation. The numbering of edges and vertexes is arbitrary. It is obvious that
the physical meaning of any quantity should not depend on the numbering.

The causal relation of vertexes sets the causal relation of edges. Sagpose
the final vertex of the edge andb is the initial vertex of the edgg. The edgex
is the cause of the edgkif vertexa is the cause of vertdx The causal relation is
an order relation on the set of edges, namely a relatisoch thave, 8, y € G,

{o | (@ < @)} = D (irreflexive relation), (2.1)
Ya ({8 | (@ < B) A (B <a)} = D) (acyclic relation), (2.2)
a < pBandg <y = a <y (transitive relation), (2.3)
[, B]| < oo (local finiteness) (2.4)

The causal relation of edges is a reflexive relation if we set the edge as a
cause of itself. Similarly, the causal relation of edges sets the causal relation of
vertexes.

A vertex is a discrete spacetime point. An edge is an elementary timelike four-
vector called chronous. Itis possible that an edge is an elementary four-momentum.
It is possible that the vertex representation is the discrete basis of the spacetime
representation, and the edge representation is the discrete basis of the momentum
representation.

2.3. A Fundamental Law of Conservation and a Binary Principle

The causality principle is not the only restriction on the structure of the graph
in this paper. By assumption, the graph satisfies the following conditions:

1. The number of incident edges directed to a vertex is equal to the number
of incident edges directed from this vertex. This postulate is called the
fundamental law of conservation.

2. The minimum number of interacting objects is equal to two. Each vertex
has two incident edges directed to this vertex. This postulate is called the
binary principle. Then each vertex has two incident edges directed from
this vertex. The vertex with four incident edges is calledXastructure

(Fig. 2).

We can consider these two postulates to be the principles of interpretation.
For example, if there is some vertex with six incident edges, we interpret it as two
vertexes (Fig. 3(a)). If there is some vertex with three incident edges, we interpret
it as a vertex with one more external edge (Fig. 3(b)).
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Fig. 2. The X structure. X

A graph is called a causal graph if it is a finite acyclic oriented graph and
satisfies the fundamental law of conservation and the binary principle. The graph
in Fig. 1 is such a graph.

The model similar to it was called the symmetric dyadic net, and the elemen-
tary structures were called-shaped pentads (in Finkelstein, 1988).

3. ASEQUENTIAL GROWTH DYNAMICS

3.1. Objects and Observers

The dynamics of causal graphs must include the influence of observers. Let us
discuss relations between objects and observers. The interaction between objects
and observers in quantum theory is a very complicated problem. Consider a simple
example that is well known in probability theory: a shuffled pack of 52 cards.

Ko
R X

Fig. 3. The examples of the interpretation.
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Assume that the observe€), takes the car,, but he does not look at this card.
O, gets

1
PIC1=28) = o

1
P(C: = 38) =

(3.1)

1
P{Ci=Ka&} =

for the probabilities of the denomination of the c&g Then the observe®;
sends the car@; to a very far point of space, for example, the neighborhood of
Alpha Centauri. Then the observéy takes the cardC,, and looks at this card.

AssumeC, = 2#. This is the obtaining of the information (the measurement).
ConsequenthyD; gets

P{Ci=28)=0
1
P(C, = 38) =

(3.2)

1
PICi=Ka&) ==

for the cardC;. The probabilities of the denomination of the ca&d at Alpha
Centauri are immediately changed in the process of measurement on Earth. This
effect is called the reduction of a wavepacket in quantum theory.

The considered example is more interesting if we take into account the time.
Assume that the observe@; takes the car@; at the point of timely, but he does
not look at this card. This is the first eve@; gets

1
PIC1=28Ti} = &

1
P{C1 =3, T} = =
(3.3)

1
PIC1=K& T =
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for the probabilities of the denomination of the c&xd Then the observed, takes
the cardC, at the point of timeT, > Ty, and he also does not look at this card.
This is the second event. Then he looks at the E€aralt the point of timel; > T,.
AssumeC, = 2. This is the obtaining of the information (the measurement).
ConsequentlyD; gets

P{Ci =28, T} =0

1
P{Ci =38, T} = 01

(3.4)

1
P{Ci=K&, T1} = —
{C1 &, Ti} 51

for the first event. The measurement at the point of fimehanges the probability

of the event at the previous point of tifle. This is a causal paradox if we assume
that the probabilities are properties of objects. The probabilities describe the rela-
tions between objects and observers and depend on the properties of objects and
the properties of observers. In theory of probability this is described as conditional
probabilities.

1
P{Ci=28,T;| Oy, Ty} = =
P{C.=38,T,| O, T1} = 1
52

(3.5)
P{Ci=K&, Ty | O, T1} = 1
52

are the probabilities of the first event for the obser@egrt the point of timeTy;.

P{Ci=28,T1]| 0, T3} =0

1
P{C.=38,T1| O, T3} = 51
(3.6)

1
P{Ci=K&, Ty | O, T3} = =1

are the probabilities of the first event for the obser@grat the point of timeTs.
There are two sequences: the sequence of events of the object and the sequence
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of obtaining of the information. The causal order of events is independent of
the causal order of obtaining of the information. An observer can obtain some
information about a previous event after obtaining some information about a later
event.

The probabilities of the same event can be different for different observers at
the same point of time. If the observ@®g does not look at the caid, at the point
of time T3 > T, he gets

1
P{Ci=28,Ty| Oy T3} = =

1
P{C, = ,T1] Oy, T3} = —
{Ci=38,Ty| Oy, T3} 55

(3.7)

1
P{Ci=K&, Ty | Oy, T3} = =

The probabilities depend on the properties of observers that concern the re-
lations between objects and observers. The probabilities are independent of other
properties of observers. For example, the probabilities depend on the information
that an observer has, and they are independent of the time of obtaining of this
information.

The information about the cafd} is a part of the information. The number of
cards inthe packis the initial condition. However, itis possible that the obs@gver
does notknowthe number of cards inthe pack. Inthis case the number of cardsinthe
pack is the condition in conditional probabilities. In a general case we must specify
all the information in conditional probabilities: initial and boundary conditions, a
frame of reference, and so on. An absolute probability is the convention. This is the
conditional probability relative to minimal common information for all considered
observers or that relative to one fixed observer.

Let us discuss similar problems in quantum theory. Consider the descrip-
tion of a pack of cards by using the mathematical formalism of state vectors.
The pack of cards has evident properties and this example exhibits some prop-
erties of the mathematical formalism that are not clear in the case of micro-
scopic objects. Consider the probability amplitudes instead of the probabilities.
Assume

¥ = |PY?|exp(¢) (3.8)
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where the phase is arbitrary. The pack of cards is the macroscopic object and
the probabilities do not depend on phases. The right basis vectors are

0 0
0 0
1 0
. |oa)y=] 0 K&) =] 1 (3.9)
0 0
0 0
0 0

These are the eigenvectors of the denominations of the cards. Consider the
state vector of the car@, for the observe;. The state vector of the cafgi at
the point of timeT; is

5172 exp(¢)
5272 exp( )
IC1Ta) = | 5272 exp(¢) (3.10)

52712 exp(¢)
The state vector of the cafel at the point of timeTls is

0
512 exp(¢)
512 exp(¢)
ICiTs) = | 512 exp(¢) (3.11)
512 exp(¢)

5112 exp(¢)

This is the projection of the state vect@; T;). However, the state vector of
the cardC; at the point of timeT; is equal taC; T;) for the observeD,. The state
vector (3.11) is the state vector for the obser@grand not the state vector for the
observerO,. In a general case the state vectors of the same object at the same
point of time are different for different observers

The probabilities do not describe a single event. A single event takes place
or does not take place. The probability of an event is the number of such events
in some set of possible events divided by the number of all events in this set of
possible events. If some observer obtains some information, the single event does
not change. The observer only changes his own opinion about the set of possible
events.
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The measurement consists of two parts. The first is the interaction between
an object and a device. This interaction can change the object and must be de-
scribed by equations of motion. The second is the obtaining of new information
by some observer. This change is described by a projection of a state vector, a
reduction of a wavepacket in quantum theory, or by conditional probabilities in
theory of probabilityWe must use conditional amplitudes and conditional state
vectors like conditional probabilities if we want to describe the points of view of
different observers with different information in quantum thedlgw only abso-
lute state vectors are used in quantum theory. This description concerns the set of
observers that have the same information and consequently the same set of possible
events.

The macroscopic object has some properties that do not depend on observers.
For example these are the denominations of cards. The description is more com-
plicated for microscopic objects.

In the considered model of causal graphs the elementary objects are the
edges and vertexes. These objects have no internal properties. All properties are
their positions in the causal graph that are described by the structure of the causal
graph. However, the observer’s information is also the structure of the causal graph.
The properties of edges and vertexes and the information about these properties
are the same.

The objects of the next level are the subgraphs with the fixed structures that
include some small numbers of edges and vertexes. The internal properties of such
objects are their internal structures. The aim of the dynamics is to investigate the
correlation between these subgraphs in the graph of the universe.

3.2. Correlations of Structures

We can make up the catalogue of all structusg®, v) of causal graphs that
consist ofe edges and vertexes for any finite whole numbezsandyv.

Consider the sufficiently large finite causal gra@hniverse FOr example
GuniverseiS the known part of the universe. Consider all the partition&@fierse
into all possible causal grapl&,. EachGy, is some structure, (e, v)

Gp = sa(&, V) (3.12)

Countthe numbens(s,(e, v)) of Gy = s4(e, V), inall the partitions o6 yniverse
for each structurg,(e, v). If the sameGy, is included in different partitions, it is
counted only once. Consider randomly cho&grwith fixede andv. By definition

P{Gp = sa(e, V) | Guniversd

k=1

K -1
= [Z n(s(e, V))} n(sa(e v)) (3.13)
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This is the probability thaG, = sy(e, v), whereK is the number of different
structuressy (g, v) that consist ok edges and vertexes. The definition (3.13) is
the definition of words: . . randomlychosenG,, with fixed e andv.”

Suppose the probabilities (3.13) of the causal graphs in the earth’s laboratory
do notdepend on th8 niversefor sufficiently largeGyniverse VWe will consider below
the conditional probability (3.13) to be the absolute probabiif, = sy (e, v)}.

Consider some historly, of some object. For example, this is the history
of some lorry during a day. In the considered mdugis the set of causal graphs.
This set is a convention. For example, we can either include the history of the
broken lorry in this set or not. Assume that by definition the history of any object
includes only connected causal graphs.

Consider randomly choseéh,. Using (3.13), we get

P(Goeh}= ) P{Go=s(eV) (3.14)
s(ev)eh,

This is the probability that a randomly chosen area of spacetime is a lorry. This
is a very small value. Consider this probability if we know the structure of some
connected causal grafhy. If G, U G; is a disconnected graph, the probability
(3.14) does not change. The information tatexists in the universe is already
included in the definition (3.13). We sum up only the numbers of the existing
causal graphs.

Assume thaGy, U G; is a connected graph. If in general case the probability
(3.14) does not change, this is the universe without correlations between events,
this is chaos. In the real universe the events correlate and in a general case we get

P{Gp € h; | G1} # P{Gp € h;} (3.15)

For exampleh; is the history of the lorry in the course of a ye&; < h;, and
most of the vertexes @b, are the cause of most of the vertexe€gf In this case
P{Gy € h; | G1 € hy} is the probability that the lorry will exist during the next
day if it existed in the course of the previous year. This is not a very small value.
Consequently, only connected causal graphs are considered below.

3.3. A Growth of a Causal Graph

Now | introduce the following concept of a causal graph dynamics. Suppose
we have all the information about the structure of some causal @gsafitne aim
of a causal graph dynamics is to calculate probabilities of the structures of other
causal graph& that are connected wit@.

We can investigate the structure of the causal gi@plstep by step. This
procedure is called the sequential growth dynamics for the causal Graptowth
of the connected causal gra@his a sequence of some elementary processes. Such
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Fig. 4. The first type of the elementary interaction.

process is called an elementary interaction. Consider all types of the elementary
interactions.

The first type is the generation of a new vertex by two external output edges
(Fig. 4). The second type is a generation of a new vertex by two external input
edges (Fig. 5). This growth of the causal graph in the past does not contradict to the
causality. This is not an appearance of a new vertex. This is an appearance of new
information about the past. The third type is a merging of one external input and
one external output edge (Fig. 6). This merging can occur if the causality principle
is not broken. The incident vertex of the external input edge is not the cause of
the incident vertex of the external output edge. The fourth type is a generation of
a new vertex by one external output edge and the edge that is not connected with
the considered causal graph (Fig. 7). The fifth type is a generation of a new vertex
by one external input edge and the edge that is not connected with the considered
causal graph (Fig. 8). According to the fundamental law of conservation and the
binary principle, the number of external edges does not change in the elementary
interactions of the first and second types; the number of the external input and
output edges decreases by one in the elementary interactions of the third type; the

Fig. 5. The second type of the elementary interaction.
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Fig. 6. The third type of the elementary interaction.

number of the external input and output edges increases by one in the elementary
interactions of the fourth and fifth types. The elementary interactions of the first,
second, and third types describe interactions of the edges of the causal graph. The
elementary interactions of the fourth and fifth types describe interactions of the
edge of the causal graph with all other universe.

All the variants of the growth of the connected causal graph can be divided
into the elementary interactions of these five types. The sequence of elementary
interactions is the sequence of the obtaining of the information about the structure
of the causal graph by the observer. This sequence is not connected with the causal
order of the causal graph.

The elementary interaction is the interaction of the external edges. The in-
teraction of the vertexes is the interactions of the external edges incident to these
vertexes. Consequently, the edge representation is preferable.

3.4. Probabilities of Elementary Interactions

The task is calculation of probabilities of any variants of the structure of the
causal graph obtained from the given causal graph as a result of stochastic growth.
Three procedures are necessary for the definition of this stochastic growth. The
first procedure is the determination of the structure of the given causal graph.
The second procedure is the determination of the probabilities of its elementary

Fig. 7. The fourth type of the elementary interaction.
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Fig. 8. The fifth type of the elementary interaction.

interactions. The third procedure is the calculation of probabilities of different
sequences of elementary interactions.

It is meaningless to talk about the exact structure of the causal graph if we
cannot determine its structure. Supposing the following procedure exists, we can
stochastically initiate one elementary interaction for any given causal graph and
we can determine the exact change of the structure of the causal graph that is
the result of this elementary interaction. This procedure is called the elementary
measurement.

We can construct a causal graph and determine the exact structure of this
causal graph using elementary measurements. Consider the causal graph that con-
sists of one isolated edge. Only the elementary interactions of the fourth and fifth
types are possible for this causal graph. In this case these elementary interactions
are the same and the probability of this elementary interaction is equal to one. We
get the causal graph that is tkestructure (Fig. 2). We get the causal graph with
the known structure using the sequencéloélementary measurements.

Repeating the sequenceMfelementary measurememsimes, we get a set
{G(N)} of ncausal graphs. This set consists of subsets of the causal graphs with the
identical structure. Suppose the su§&tN) = s (e, v)} of causal graphs consists
of k elements. Suppose the sub88{N) = s,(e, v)} of causal graphs consists of
| elements. By assumption, the rakih tends to the real ratio of the numbers of
causal graph&(N) = s(e, v) andG(N) = sy(e, v) in the graph of the universe
if N — oo. This is the meaning of the words “We catochasticallyinitiate one
elementary interaction .” in the definition of the elementary measurement.

Considerthe s¢tG(N) = s,(e, v)} of the same causal graphs that are the result
of the sequence dfl elementary measurements. This set consisksedéments.
Adding one elementary measurement, we get th§ GéN + 1)} of the causal
graphs that are the result of the sequenc®of 1 elementary measurements.
This set consists df elements. Consider the subset of the identical causal graphs
that are the result of the elementary interaction of the external edgeds of the
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causal grapli(N) = s;(e, v). Suppose this subset consists @élements. Denote
by P{«a, B} the probability of the interaction of the external edgeand 8. By
definition,

Pla, B} = kILmOO (%) (3.16)

We mustwriteP{«, 8 | G(N) = s(e, v)} instead ofP{«, 8} in (3.16), butwe
shall omit the designation of the causal graph for simplification of the designation
if the designation of the causal graph is evident. No external edge can interact with
itself. Denoting the probability of the elementary interactions of the fourth and
fifth types byP{aa} and using the definition (3.16), we get

2D Ple p) = lim ((ZZr) kl) = lim (E) =1 (317)

a B<a o BLa

We get
Pla} =) Pla, ) (3.18)
B

for the probability of the elementary interaction of the external edgéth any
external edge.

P{«, B} is the classical probability and the considered model is a particular
kind of the theory with hidden variables. If we can calculate the probabilities of all
the elementary interactions of any causal graph, we can calculate the probabilities
of all new parts of some causal graph as the probabilities of random sequences
of elementary interactions. This is similar to the sequence of measurements in
guantum theory. There is no interference of wavefunctions before and after the
measurement. The sequence of measurements in quantum theory is the classical
random sequence.

There are two dynamics. The first is the description of some process with
the fixed information. This is a deterministic equation of motion. The second
dynamicsis the rules of addition of some new information. In this section the second
dynamics of causal graphs is presented. If we get new information about the exact
structure of some new part of the causal graph, all the probabilities are changed.
The probability of this structure is equal to one. The probabilities of alternative
structures are equal to zero. We must calculate other probabilities with the addition
of this new information. This is an analogue of the quantum measurement and a
projection of a state vector. Such dynamics is a “growth” of the causal graph. This
is not an appearance of new parts of the causal graph. This is an appearance of
new information about the existing causal graph.

The first dynamics of causal graphs are the deterministic equations for the
calculation ofP{«, 8} for the fixed structure of the causal graph. These equations
of motion can be very complicated. | assume tR4&, 8} is the square of the
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modulus of some complex amplitude. This is the correspondence principle of the
presented model and quantum theory. The description of causal graphs by complex
amplitudes is presented in Section 5. The equations of the motion of causal graphs
are the deterministic equations for the calculation of complex amplitudes. Some
examples of such equations are presented in Krugly (1998, 2000a,b).

4. PHENOMENOLOGY OF CAUSAL GRAPH
4.1. ATime

The aim of phenomenology of causal graphs is to identify subgraphs and
real objects and to discuss the physical meaning of some quantity in the model in
question.

An oriented sequence is a discrete microscopic analogue of a continual macro-
scopic world line. By definition the microscopic time intervst,, between two
vertexesa andb of the oriented sequenc®is the numbek of the edges between
a andb in Smultiplied by some constant of time

Atagp = 7K (4.1)
if a is the cause db. Otherwise
Atgp = —7K (4.2)

The time intervalAt,, describes the causal order of the causal graph and is not
connected with the time of observers.

Consider the oriented sequen8ethat is the result of the process of the
sequential growth. Consider the causal gr&gN;). This graph is the result 64,
elementary interactions. Consider some veaex G(N;) that is incident to some
external output edge;. The growth ofSfrom «; is the following process. We do
not consider the elementary interactions of the third type for simpligityloes
not take part in the firsh; — 1 elementary interactiong; interacts at the next
elementary interaction (Fig. 9(a)). We get two external output edges. Choose one of
these edges ag; ap does not interact at the nemt — 1 elementary interactions.
ay interacts at the next elementary interaction (Fig. 9(b)). We get two external
output edges. Choose one of these edgesgaéfter N elementary interactions
we get the causal gragB(N; + N) (Fig. 9(c)). In general case, is the internal
edge inG(N; + N). We get some oriented sequerngdrom vertexa to some
vertexb. Sincludes the internal edges, oz, a3, ... ax. The vertexb is incident
to some external output edgg, 1. Consider the same causal graj@&\;) and
repeatN elementary interactions. In general case we get different causal graphs
G(N; + N) and different oriented sequencBsCalculate the mean numblerof
the edges irS. By P{S| G(N; + n)} denote the probability of the addition of
one edge t& at the elementary interaction with the numidér+ n + 1. This is
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the probability (3.18) of the elementary interaction of the external output edge in
the end ofS. In a general cas@{S| G(N; + n)} depends on the results of the
previousN; + n elementary interactions. For the mean number of the edg8s in
after N elementary interactions we have

(k) = P{S| G(N)} + P{S| G(N1 + 1)} +---+ P{S| G(N; + N — 1)}
4.3)
In a simple case all the probabiliti€sS | G(N; + n)} are equal. Then this
probability of the elementary interaction of the external output eglge the end
of Sis independent of the numbef «;. Denoting this probability byP{«}, in
this case

(k) = N P{ar} (4.4)

The meaning of this equation is trivial. If the probability of the elementary
interaction of the edges in the oriented sequence is greater, the interactions occur
more often, and the oriented sequence has more edges. We get

o%(k) = NP{a}(1 - P{a}) (4.5)
for the dispersiomr (k) of k. Using (4.1) and (4.4), we get
(Atap) = TN P{a} (4.6)
for the mean microscopic time interval between two vertexaadb. We get
0?(Atap) = TN Pla}(1 — P{a}) (4.7)

for the dispersiom (Atap) Of Atyp.

Consider a “small” causal graph that corresponds to one infinitesimal macro-
scopic world line. The infinitesimal macroscopic proper time intedvalis uni-
quely defined in relativity theory using a standard point clock. We must define the
standard point clock in the considered model in order to define the macroscopic
proper time interval. A clock is some periodical process. In this model a point pro-
cessisan oriented sequence. Let the standard point clock be some standard oriented
sequence. By definition the macroscopic proper time intetwhlis the micro-
scopic time interval of the standard oriented sequence. Walismstead od T
because there are no infinitesimal quantities in discrete models. Using (4.1), we get

AT = tKeiock (4.8)

for AT, wherekgock iS the number of edges in the standard oriented sequence.

Consider the meaning of the standard oriented sequence. Let the standard
oriented sequence be the result of the sequence of elementary interactions with a
standard probability.

P{a} = P{clock} 4.9
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Let u be the number of the external edges@f P{clock} is normalized
by condition (3.17). Consequentl{«} decreases ifi increases. Modifying the
condition (3.17) to exclude the influence of we have

S Pufe pl =1 (4.10)

a B<a
Pu{a, B} = uP{a, B} (4.11)
Consequently,
Pua} = uP{a} (4.12)

Let the standard point clock be the oriented sequence with the constant probability
P.{clock} = const (4.13)

In this case the probability?{clock} of the elementary interaction of the
standard point clock depends only an

P{clock} = 1P, {clock} (4.14)
Using (4.4), (4.8), (4.9), and (4.14), we get
(AT) = tP{clockiN = tP,{clockiu*N (4.15)
for the mean macroscopic proper time interval. Using (4.7), (4.9) and (4.14), we get
o2(AT) = 2P{clock}N(1 — P{clock})
= 2P, {clocklu*N(1 — P, {clockix™%) (4.16)

for the dispersionr (AT) of AT. Equations (4.6) and (4.7) are valid in a simple
case if P{«} is constant. Consequently, using (4.9), (4.13), and (4.14), we see
that Eqgs. (4.15) and (4.16) are validufis constant. In this case only elementary
interactions of the first and second types are allowable. Consequently,

P{aa} =0 (4.17)

for all external edges. Using (3.17), (3.18), (4.6), and (4.17), we get
(Atap)e = rN( 12 P{a}) = tN( YN Pl ,3})
a B
= rN(Z,ulz > Pla, ﬂ}) =2tNp ™t (4.18)

o BLa
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for averaged At,p) of all oriented sequences @(N; + N). The right side of
Eqg. (4.15) has the clear physical meaning that is proportionate td Atap)) G-

For the causal graph corresponding to a set of macroscopic world lines, the
definition of the macroscopic proper time interval is not discussed in this paper
because in this case we must define continuous spacetime as a limit of the causal
graph. The definition of the macroscopic proper time interval for one infinitesimal
macroscopic world line can be the first step.

Time is a parameter in quantum theory. In this model time is a stochastic
variable.

4.2. A Mass

Let the set of oriented sequences be corresponded to the same segment of the
macroscopic world line. Each oriented seque8dés some physical process. We
can describe this process using the cyclic freques(&). By definition, put

o(S) = ek(AT)™? (4.19)

wheree is some constant of a phadeis a number of the edges B AT is the
macroscopic proper time interval of the considered segment of the macroscopic
world line. In a general case, different oriented sequences have difkarantbers
of the edges and different cyclic frequences.

We have for the phase difference between the en& of

#(9) = w(SAT = ek (4.20)

Consequently; is the phase difference between the ends of one édigexges are
identical ands is a universal constanthis is the main assumption. It is possible
thate is equal tor /2 (Krugly, 1998, 2000a,b); however, this value is not used in
this paper.

Using (4.4), (4.12), (4.14), (4.15), and (4.19), we get

(@(9)) = et 1P{clock} 1P {«}
= et *P,{clock P, {«} (4.21)

for the mean cyclic frequency,  andP,{clock} are universal constants and the
mean cyclic frequency in (4.21) depends only®{«}. Equations (4.4), (4.15),
and (4.21) are valid iP,{«} is the constant for the growth & The meaning of
Eq. (4.21) is trivial. If the probability of the elementary interaction of the edges
in the oriented sequence is greater than such probability for the standard oriented
sequence, the interactions occur more often than in the standard oriented sequence,
and the considered oriented sequence has more edges.

The probabilityP,{«} is the property of the single external edgeConse-
quently, we can consider the cyclic frequency (4.21) as the cyclic frequency of the
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external edge. By w{a} denote this cyclic frequency. By definition, put
wl{a) = et P{clockl "1 P{«a}
= et *P,{clock 'P,{«} (4.22)

The definition (4.22) is valid for the single elementary interaction. Assume
this definition in general case. The simple case with the conBigat} is only an
illustration of the physical meaning of this definition.

how = mc& (4.23)

for a particle in quantum theory, wheheis the Planck’s constant is the mass
of a particle, ana is the speed of light. By definition, put

m{e} = he %w{a} (4.24)

m{«} is called the mass of the external edgén the considered model the external
edges are particlesn Section 5.6 the external edges are described by Dirac’s
equation.

Using (4.22) and (4.24), we get

m{a} = moP,{a} (4.25)
for m{«}, where
mo = hc2et71P, {clock}~* (4.26)

is the universal constant of ma3$e mass of the particle is the probability of the
elementary interactiorThe proper time intervak T is used in the definition (4.19)
of the cyclic frequency. Consequentig{«} is the rest mass. If the minimum value
Py, min > 0 of P, {a} exists,mgP,, min is the minimum mass of the particle. If the
maximum valueP,, max Of P, {a} exists,mgP, maxis the maximum mass of the
particle.

P.{«} describes the intensity of interactions of the external edgéerefore,
the rest mass describes the intensity of interactions of a particle with all other
universe. This is Mach’s principle. Mach’s principle states, generally speaking,
that local inertia is determined by the overall distribution of the mass in the whole
universe.

The case of external output edges has been considered above. Equation (4.25)
defines the rest mass of the external output edge

m{at} = +moPyf{at} = +mou Pt} (4.27)

The consideration of the external input edges is the same, but we must use (4.2)
instead of (4.1). Consequently, we must change the sighatf) in (4.6), AT
in (4.8), (AT) in (4.15),w(9) in (4.19),¢(9) in (4.20),(w(9)) in (4.21),w{a} in
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(4.22), andn{a} in (4.24) and (4.25). We get
Miel} = —MoPu{al} = —mouPlal} (4.28)

for the rest mass of the external input edgg. The external input edges are
antiparticles. The external output edges become the external input edges if the
orientation of the edges is inverted. This is T reversal.

The model in question describes the asymmetry of the matter and the an-
timatter. The number of the external output edges is equal to the number of the
external input edges in a causal graph according to the fundamental law of con-
servation. This is the symmetry between particles and antiparticles. However, the
causal graph describes the present and the past. If we consider only the present
there is the asymmetry between particles and antiparticles. Consider an external
output edge. The rest of the external edges exist for this edge if they can interact
with it. They are all external output edges and only a part of the external input
edges. The interaction with the rest of the external input edges breaks the causality
principle. These external input edges are in the past relative to the considered edge.

The elementary interaction of the third type is the annihilation (Fig. 6). The
elementary interactions of the fourth and fifth types are the births of particle—
antiparticle pairs (Figs. 7 and 8).

4.3. A Time—Energy Uncertainty Relation

Consider the measurement of the rest mass. We cannot meaguyeor
w{a} because the probabilit, {«} is not the directly measurable quantity. By
assumption we can count only elementary interactions and edges in sequences.

Consider the following experiment. This is the growth of the oriented se-
quence presented in Section 4.1. We now consider the parallel growth of two
oriented sequences (Fig. 10). We have the causal gséjph), which is the result
of N; elementary interactions. We have the standard point clock as a part of the
considered causal graph. Consider some external outputeadofeG(N;) that
is incident to some vertea. Let «; be the object under consideration. Consider
some external output edge of G(N;) that is incident to some vertexLet 8; be
the standard point clock. Aftéd elementary interactions we get the causal graph
G(Nz + N). In a general case, andg; are the internal edges @(N; + N). We
get some oriented sequenBefrom the vertexa to some vertexb. S, includes
the internal edgess, ay, a3, ...ak. The vertexb is incident to some external
output edgex.1. We get some oriented sequerfgefrom the vertexc to some
vertexd. $ includes the internal edggs, S., B3, . .. Bj. The vertexd is incident
to some external output edgk, ;. Consider the same causal grajgh@\;) and
repeatN elementary interactions. In a general case we get different causal graphs
G(N; + N), different oriented sequenc&g, and different oriented sequencgs
By assumption we can count edges in oriented sequeéh@rlS,. Consequently,
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4

Fig. 10. The measurement of the rest mass.

using (4.8) and (4.19), we can determind andw(S;) for each causal graph
G(N1 + N). By definitionw(S,) is the measurable value ef«}. AT is the time
of measurementAT is not the time interval of the observex,T is measured by

the standard point clock of the causal graph.
Consider the dispersion of masgm{a}). We must express the mass as a
function of measurable random quantities. Using (4.19) and (4.24), we get

m{a} = hc2ek(AT)™? (4.29)
If the random quantity is the function of two random quantitigsandz
x = f(y,2) (4.30)

we have for the dispersian(x)

2 2
o002 = (5,) o2+ (5;) a7 (@31
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Using (4.4), (4.5), (4.15), (4.16), (4.29), and (4.31), we get
o(M{a})? = (hc2et 1P{clock} "1)2N1P{a}((1 — P{a})
+ P{clock}"1P{a}(1 — P{clock})) (4.32)

In quantumtheory time is a parameter and does not have dispersion. Therefore
a time interval is used in the uncertainty relation. In the considered model the
standard point clock is a stochastic process. Hence the time interval is a random
quantity with the dispersion (4.16) and we can use this dispersion in the uncertainty
relation. Using (4.16) and (4.32), we get

o(M{a}) o(AT) = hc 2 _Ploj v (1 — P{clock})¥?
B P{clock}
P{Ol} 1/2

The uncertainty relation (4.33) does not depend\orObviously, P{«} < 1 and
P{clock} < 1. If the minimum valueP, mi, > 0 of P,{«} exists andu is a big
number in real experiments,

—2 P/,L, min
o(m{a}) o(AT) > hc ¢ <W> (1 — P{clock})

P .
_ —2 w, min _,1
=hc e <7Pﬂ{clock}> (1— n " P,{clock})

= he2e (—Pemin ) _ consts 0 (4.34)
P.{clock}

The classical probabilities of elementary interactions do not contradict to the
uncertainty relation. Consequently, the model in question may be an unlocal theory
with hidden variables.

5. AMPLITUDES OF ELEMENTARY INTERACTIONS
5.1. A State Vector of the Causal Graph

In this section, | introduce the description of the causal graph by the mathe-
matical formalism of state vectors. Let us assume

Pla, B | G} = ¢™{e, B | Glo{e, B | G} (5.1)

¢la, B | G} is called an amplitude of elementary interaction or an amplitude of
the pair of the external edgesand g in G. The dynamics is complete if there

is a law of calculation ofp{«, 8} for all the pairs of the external edges in any
given causal graph. This is an equation of motion. | do not consider such a law
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in this paper and only assume that amplitudes exist and are unique for any pair
of external edges and any causal graphs. There are some examples in Krugly
(1998, 2000a,b). The amplitudes of the pairs of vertexes are discussed in these
papers. These amplitudes may be the amplitudes of the pairs of the external edges
incident to these vertexes. The aim of this section is to find a conformity between
the properties ofp{e, B | G} and the properties of quantum particles. All the
equations in this section are descriptions of the fixed causal graph and we shall
omit the designation of the causal graph for simplification of the designation.

It is evident that

Pla, B} = P{B, o} (5.2)

Consequently,

lple, BY| = 1{B, a}| (5.3)

Consider the state vector of the causal graph. The right vector is

#{1, 1
»{1,2
{1, u}
${2,1
12,2
d{2, u}
) = dla, 1} (5.4)

¢la, B}
¢l B+ 1

¢la, p}
¢{n, I

o{u, n}

whereu is the number of the external edges. The dimension of the state vector of the
causal graph is equal t&. The component{«, A} has the numbee{ — 1) + B.
The left vector is

(@l = ("1, 1 ¢™a, B} -+ ¢™ {1, p}) (5.5)
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The right basis vectors are

1 0 0
0 0 0
=0 m=|1] wh=]0 (5.6)
0 0 0
0 0 1

where the element with the numbeof the column vectom) is equal to one. The
other elements of this vector are equal to zero. The left basis vectors are

(/=1 0---00---0)
(nN=00---10---0) (5.7)
(u?l=00---00---1)

where the element with the numbeiof the row vector(n| is equal to one. The
other elements of this vector are equal to zero. Using (5.1)—(5.7), we get

Pla, By = (¢ | @B) 1) = (¢ | (@ — D+ B — L+ B 1 ¢) (5.8)

for the probability of the elementary interaction;) is the operator of the ele-
mentary interaction of the external edgesind 8. Consequently, the basis unit
vectors (5.6) are the eigenvectors of the elementary interactions.

The state vector of the external edges is normalized by the condition

"
> Pl pl=1 (5.9)
a=1 B<u

This representation is called the representation of the elementary interactions of
the causal graph.

5.2. Total State Vectors of Edges

Consider amplitudes of the elementary interactions of the externaleedge
These amplitudes form a total state vector of the external edge

¢la, 1}
Pla, 2}

lpfa}) = | ola, B} (5.10)
¢la, B+ 1}

dla, 1}
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This representation is called the representation of the elementary interactions
of the external edge. The dimension of¢{a}) is equal tou. Let ¢{«, B} be
the elementg,, of the square matrix. This matrix is called the total amplitude
matrix of the external edges. The total state vegidu}) of the external edge
is the column ofd with the numberr. The left total state vector is

(¢}l = (@™o, 1} - - ¢™{er, 1}) (5.11)

where¢*{«, B} is the eIementz&;ﬁ of the matrix®™. The state vectofp{a}| of
the external edge is the row of®* with the numbekr. |¢{a}) is the vector in
w-dimensional space of states of the external egg€he right basis vectors in
this space are

1 0 0
0 0 0

=[O0 B=]1]In=]0 (5.12)
0 0 0
0 0 1

where the element numbgrof the column vectotB) is equal to one. The other
elements of this vector are equal to zero. The left basis vectors are

(1l=(10---00---0)
(B|=(00---10---0) (5.13)
(u=00---00---1)
where the element numbgr of the row vector(g| is equal to one. The other
elements of this vector are equal to zero. Using (5.1) and (5.10)—(5.13), we get
Pla, B} = (pla} | B | pla}) = (pla} | BY(B | dla}) (5.14)

for the probability of the elementary interactighis the operator of the elementary
interaction of the external edgesand g in the representation of the elementary
interactions ofx. Consequently, the basis unit vectors (5.12) are the eigenvectors
of the elementary interactions in this representation as the basis unit vectors (5.6)
are the eigenvectors in the representation of the elementary interactions of the
causal graph.

Using (3.18), (5.1), and (5.10), we get

Pla} = (¢la} | pla}) (5.15)

Consider the conditional probabilit{c, 8 | «}. This is the probability of
the elementary interaction of the external edgemnd g if the probability of the
elementary interaction af with any edge is equal to one.

Pla, B | a} = P{a} P{a, B} (5.16)
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Consider the normalized total state vector of the external edge

[y {a}) = |Pla} "2 || ¢la}) (5.17)
The normalized left total state vector is
(W{a}| = [Pla) 2 (pla)| (5.18)

Using (5.14) and (5.16)—(5.18), we get
Pla, B 1o} = ({a) | B | e}
= (Y{a} | BYB | Y{a}) (5.19)

The normalized total state vectdig{«}) of the external edges are normalized by
the condition

n
Z Pla, B | a} = (Y{a} | ¥{a}) =1 (5.20)
=1

The elementg {«, 8} of the matrix vector$y {«}) form the normalized total
amplitude matrix¥ of the external edges. The normalized total state vegtfr})
of the external edge is the column ofl with the numbet. The normalized total
state vectokyr {«}| of the external edge is the row of&* with the numbetr.

It is evident that in a general case

[ {a, BY # V{8, a} (5.21)

5.3. An Equation of Particles

The external edge is described by the real scalar{«} and the complex
vector|y{a}). The edges with differemh{«} or | {«}) are different particles or
different states of the same particle.

Let the sefm{a}} of G be the spectrum of the square matkix and the set
{|l¥{a})} of G be the eigenvectors dfl.

My fa}) = mia}|y{al) (5.22)

Equation (5.22) is called the equation of particles.

Let us findM. The number of the external edges@®@fis .. The number of
m{a} is u. The number ofy {a}) is u. The order oM is w. Let the vectorsy {a})
be linear-independent. Consider the eigenspadd of et the vectorgy {«}) be
the new basis vector$) is the diagonal matridgiag in this representation.

m{1) 0

m{2}

Mdiag = (5.23)

0 m{u}
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M = WMgiag¥ * (5.24)

W is the unitary matrix if vectorg) {«}) are orthogonalM is the Hermitian matrix
in this case. Using (5.17) and (5.18), we get

®=WUPjsy =P vt (5.25)
where
|P{1}~%2] 0
|P{2}~1/2]
Piag = o (5.26)
0 |P{p} 2|

The diagonal matrices are permutable matrices. Consequently,

M = ®Mgiagd " (5.27)

5.4. State Vectors of Edges

The aim of this paper is to find a connection between the properties of the
particles and the quantities that describe the causal graphs. The description of
external edges by total state vectors looks like the description of quantum particles.
But the dimension ofy-{«}) is equal tou.

The vectory {«}) describes the elementary interactions of the external edge
a with all other external edges. We consider only the elementary interactions
of v external edges o5 andv < p and number these edges from luoLet
a < vandg < v below. All the equations in this case are similar to the previous
equations if we replacg by v. If we consider onlyy external edges, we must
consider the conditional probabili®{«, 8 | (v)}. P{a, B | (v)} is the probability
of the elementary interaction of the external edgesdg if only the elementary
interactions of the considered external edges occur. This probability is normalized
by the condition

DD Plpl=1 (5.28)

a=1 <«

Using (5.28), we get

v -1
Pla, 81 ()} = (ZZ P{a,ﬂ}) Pla, B} (5.29)

a=1 <o

Considering the amplitudes{a, 8 | (v)}, by definition

v -1/2
¢la, B (v)} = (ZZ P, ﬂ}) ¢la, B) (5.30)

a=1 f<a
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Using (5.1), (5.29), and (5.30), we get

Pla, B 1 ()} = ¢™{a, B | (v)}d{a, B | (v)} (5.31)

The amplitudes{«, B | (v)} ofthe elementary interactions of the edg®rm
the state vectofp{a | (v)}). The dimension of¢{« | (v)}) is equal tov. These
amplitudes form the square matrdXv). This matrix is called the amplitude matrix
of the external edges. The state vedtpfx | (v)}) of the external edges is the
column of®(v) with the number. |¢{« | (v)}) is the vector in the-dimensional
space of states of the external edgd he right basis vectors in this space are

1 0 0
0 0 0

[1w))=1] O Bo)=1]1 lviv)) =1 O (5.32)
0 0 0

where the element numbgrof the column vectoys(v)) is equal to one. The other
elements of this vector are equal to zero. Using (5.31) and (5.32), we get

Pla, B 1 (v)} = (pla | ()} | BO) | ¢l | ()
= (@l | )} | BONBOW) | dler | (v)}) (5.33)

for the probability of the elementary interactig{v) is the operator of the elemen-
tary interaction of the external edgesindg. Consequently, the basis unit vectors
(5.32) are the eigenvectors of the elementary interactions in-lienensional
space of states of the external edgeSimilar to (5.15), we get

Pla | ()} = (@l | (0} | ol | (V)}) (5.34)

for the probability of the elementary interaction of the external edgegh any
other external edgg < v.
Normalizing the state vectors,

Wi | ) = IP{a | ()72 ] ¢la | () (5.35)

The normalized amplitudeg {«, 8 | (v)} from the normalized amplitude
matrix W(v) of the external edges. The state vedtgfa | (v)}) of the external
edgex is the column of¥ (v) with the numberx.

Consider the conditional probability{«, 8 | «(v)}. This is the probability
of the elementary interaction of the external edgesdg if the probability of the
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elementary interaction af with any external edgg < v is equal to one.
Pla, B | a(v)} = Pl | ()} Pla, B (v)}
= Pla | ()} Holo | ()} | B) | ¢la | (0)})
(Wla | ) 1) | ¥ie | M)

= Yla | ()} 1 BONBEW) [ Yl | (D (5.36)

If we consider only the elementary interactions of the external edgesand
B < v, we can consider the approximate mass. RepRieet} with P{at | (v)}
in (4.27). By definition put

miat | (v)} = +mov Pt | (v)} (5.37)
for the approximate rest mass of the external output edgeSimilarly
miel | (v)} = —movP{er| | (v)} (5.38)

for the approximate rest mass of the external input edge
If {|¥{« | (v)})} are linear-independentjy {« | (v)})} are the eigenvectors
and{m{a | (v)}} are the eigenvalues of the equation of particles

M) [Y{e | (V)}) = mia | (WHY{e | (VD) (5.39)
where
M(V) = \I/(V)'\/ldiag(‘f)"I’(V)_l = CD(V) 'Vldiag(‘))q)(‘})_1 (5-40)
and
m{1| (v)} 0
Maiag(v) = mi 1w (5.41)
0 m{v | (v)}

Suppose we can determine some regular structure in different causal graphs
and this structure consists of external edges. Consequently, this structure is
described by the set ofstate vector$|y {« | (v)})} and the set ob approximate
rest masses;is independent of the other parts of the causal graph. This description
is similar to the description of the set ofguantum particles.

5.5. Amplitudes of Internal Edges

The quantum patrticle is described at some instant of time by a set of ampli-
tudes. If a measurement occurs, the amplitudes determine probabilities of different
results of this measurement. However, without measurements the probabilities are
meaningless. The amplitude is only some mathematical description at the instant of
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time without measurements. If we consider the amplitudes of all pairs of all edges,
we get a similar description for the causal graph. We suppose that the amplitudes
of all pairs of all edges of any causal graph exist and the structure of the causal
graph uniquely determines these amplitudes. If both edges are external, the square
of the modulus of the amplitude is the probability of the elementary interaction
of these edges. If one edge or both edges are internal, the amplitude is only some
mathematical description of the structure of the causal graph. The same edge is
an internal edge for some observers and an external edge for other observers. The
same mathematical description of external and internal edges allows a comparison
of the properities of the same edge for different observers.

Only the external edges can interact. In this case we must use the following
equation

Pla, B} = @¢™{a, Biofa, B} (5.42)

instead of Eq. (5.1 is the operator of the external edges. By definigoa 1 if
a and B are external edges. Otherwige= 0. We must change all the equations
where amplitudes determine probabilities. We must use the following equation

Pla, B} = (pla) | €8 | pla)) (5.43)

instead of Eq. (5.14). In this case the dimensiofp¢é }) is equal to the number of
all the edges in the causal graph. There are similar changes in the other equations.
The third type of elementary interaction is a merging of one external input
edge and one external output edge (Fig. 6). This merging can occur if the causality
principle is not broken. The incident vertex of the external input edge is not the
cause of the incident vertex of the external output edge. It is useful to describe this
prohibition as a selection rule. Suppose the amplitudes are not equal to zero in a
general case for such interaction. In this case we must use the following equation

Pla, B} = Ceg™{a, Bld{a, B} (5.44)

instead of Eq. (5.42%is the causal operator. By definitién= 0 for the elementary
interaction of the third type if the incident vertexof the external input edge

is the cause of the incident vertéxof the external output edgg. Otherwise

¢ = 1;¢€ = 1 for the elementary interactions of the first, second, fourth, and fifth
types. We must change all equations where amplitudes determine probabilities.
We must use the following equation

Pla, B} = (pla) | €S | pla}) (5.45)

instead of Eq. (5.43). Evidently, the operaté@ndé commute.

There is a simple algorithm to calculaidor the elementary interactions of
the third type. Consider the vertex incidence ma#{$z). The matrix element,y,
is equal to 1 if there is an oriented edge between the initial vertexd the final
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vertexh. Otherwisev,p = 0. The element,p(n) of the matrix §/(G))" is equal to
the number of all the oriented sequences wittdges between the initial vertax
and the final vertek. Letr be the number of the internal edged®fLetk be the
maximal number of the internal edges®fthat are included in the same oriented
sequence. It is clear thit< r. Consequentlyap(n) = 0if r < n. Let

t=c (i vab(n)) (5.46)
n=0

for the incident vertex of the external input edge and the incident veltef the
external output edge(x) = 1 if x = 0. Otherwisec(x) = 0.

5.6. Dirac’s Equation of Free Particles

Consider the base structures of the causal graph. The simplest structure is
an edge. This is a trivial structure. The next structure is a vertex. Each vertex
has four incident edges: two input edges and two output edges (Fig. 2). This is
the consequence of the fundamental law of conservation and the binary principle.
This structure was calleX structure in Section 2.3. In this cage= 4. Let

@1 (@} [ o{1 ] (D)) = (™21 (D} | p{2] (D))
= (931 (4} | #{31 (4)})
= (¢"{4] (4} | p{41 (D))
= (4mp)~Im (5.47)

wherem is some real positive number. If these edges are external edges, using
(5.34) and (5.47), we get

P{1](4) = P{2] (4) = P{3| (4) = P{4| (4)} = (4mo) 'm  (5.48)

Then
m 0
Maiag(4) = S (5.49)
0 -m
Using (5.39), (5.40), and (5.49), we get
M@y {a | (4} =Emiy{a | (4)}) (5.50)
where

M(4) = W (4)Mgiag(4)¥ (4) ! = ©(4)Mgiag(4)P(4)* (5.51)
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Equation (5.50) coincides with Dirac’s equation in the momentum represen-
tation. This is the momentum representation because all the numbers in (5.50) are
¢ numbers. This is coordinated with the assumption in Section 2.2 that the edge
representation is the momentum representation.

Consider a simple case th&(4) = ®,(4).

W(po + m) 0 Wps w(p1 —ip2)
Dy(4) = 0 Wipo+m) wiptir) - —wps (5.52)
Wps wW(pL—ip2)  W(po+m) 0
w(py +ip2) —Wps 0 w(po + M)
where
W = (2po) Y?(po 4+ m)~¥?m¥?2 (5.53)

Po, P1, P2, and pz are the real numbers, and
Po—pi—p5—p5=m’ (5.54)

In this case Eq. (5.50) coincides with Dirac’s equation of free particles in the
standard representation. The equation (5.50) Wighy(4) coincides with Dirac’s
equation of particles at rest. Using (5.52), we get

®4(4) = mY/?B (5.55)
whereB is the boost.
detB=1 (5.56)

The columns ofl;(4) = B coincide with the state vector{«(4)}) of par-
ticles with the spin 1/2.

In the considered case the edges are fermions that satisfy Pauli's exclusion
principle. In general case the equation (5.50) exists if the state vectors of the edges
are linear-independent columns @f(4). This is the form of Pauli’s exclusion
principle.

If the edges inX structure are external edges, we can calculate the range of
the mass. Using the condition (5.28), we get

4

Y3 Pl pl (@) =1 (5.57)

a=1 <

Using (5.48) and (5.57), we get

(@mo) = 2 — Z(PIL, 1] (@) + P(2,2] (4)
+ P{3,3| ()} + P{4,4| (4)}) (5.58)
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Obviously
O0<(P{L, 1] (4} + P{2,2](4)) + P{3,3] (4)} + P{4, 41 (4)})
4
<D ) Plapl@y=1 (5.59)
a=1 B<u

Using (5.58) and (5.59), we get
Mo <M< 2mg (5.60)

The consideration of the simph¢ structure does not provide the real value
of the mass of the particles.

6. DISCUSSION

Suppose that state vectors of the edges are linear-independent and satisfy the
condition (5.47) for eaclX structure in any causal graph. In this case all the edges
are fermions with the spir%. They are building blocks of the universe. These
conditions must be the consequences of the equation of motion that is the rule for
calculation of the amplitudes. This is the prompting to searching of this equation.

The edges inX structure are described by Eq. (5.50). This equation is the
relation between the fixed sets of numbers if the causal graph is fixed. Only the
numbering of the edges is arbitrary. If we fix the causal graph, we fix the information
about the causal graph. In other words we fix the observer. The fixed observer
describes any object as a set of fixed numbers. Suppose the ol3¢ekreaws the
causal grapl@; and the observe®, knows the causal grap®,. Both observers
can describe th¥ structureX; if X; € Gi N G,. In general case the observés
andO; describe the sam structureX; by the different equations (5.50) because
the causal graph&; andG, are different. The consequence of the change of the
observer is a transformation of Eq. (5.50) and state vectors. In particular case this
transformation is Lorentz’s transformation. The choice of the causal graph is the
discrete analogue of the choice of system of reference.

The set of possible causal graphs is finite if the graph of the universe is finite,
or the set of possible causal graphs is a countable set if the graph of the universe
is infinite. Consequently, all the sets of quantities that describe the causal graphs
are finite or countable sets. In a particular case the state vectors form a finite or a
countable set.

Allthe edges inX structures are described as the particles with the rags
Perhaps we can describe the edges as different particles with the real mass if we
consider the more complicated structures that include a few neighbor vertexes.
Such structures can describe the multiplets of particles.

The edge is a particle at the fixed point of time. If we want to describe the
influence of the force fields, we must consider the particle at different points of time.
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Fig. 11. The finite part of the infinite graph with the structure of a
chessboard.

Consider the oriented sequence as the discrete world line of the particle. The two
consecutive edges of this sequence are two consecutive states of the particle. Ifthese
states are described by the different states vectors, we can describe this difference
as the influence of the force fields. An example of the absolutely symmetric graph

is the infinite chessboard (Fig. 11). In this case all ¥hstructures are described

by the same Dirac’s equation. It is possible that the quantums of force fields are
the elementary breakings of the symmetry.

There are following ways for the future investigation of the considered model.

The first way is to investigate different structures that include a few neighbor
vertexes. This is the investigation of the appropriate equation (5.39), the state vec-
tors, their transformations and possible interpretation as the multiplets of particles,
Lorentz’s transformations, and gauge transformations.

The second way is to search the law of calculation of the amplitudes for
the given causal graph. It is possible that this is some sum over sequences as the
discrete analogue of the path integral.

The third way is to investigate the proceeding to the limit of continual space-
time. There are four parametgpg, p1, p2, and ps in the amplitude matrix (5.52)
that must be interpreted in a continual limit as components of the four-momentum.

It is possible that we will be able to get spacetime by two steps. The first step
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provides us with the four-dimensional momentum space in each vertex. The sec-
ond step provides us with spacetime by some kind of Fourier transformation. In
this case the dimension81 of spacetime is the consequence of Eqg. (5.50). We
can call this dimension the dynamical dimension.
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